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Abstract

Correlating expressions for two-phase flow breakup
of liquid nitrogen, LN 21 jets in sonic velocity nitrogen
gasflows were obtained for an atomizing-gas temperature
range of 111 to 442 K. The correlations were based on
characteristic dropsize measurements obtained with a
scattered-light scanner. The effect of droplet vaporiza-
tion on the measurements of the volume-median drop-
size, Dv 5 , was calculated by using previously determined
heat and momentum transfer expressions for droplets
evaporating in high-velocity gasflow. Finally, the drop-
size of the originally unvaporized spray, D v 5c , was cal-
culated, normalized with respect to jet diameter, Do,
and correlated with atomizing-gas flowrate and tempera-
ture, according to the following expression:

0.44	 1.25

Do = 9.0 WeRe?g
][tg]

Dv.5c	 pl	 to

where WeRe = p 2̂DoVC //z la. Here µ l is liquid viscosity,
p  and p l are gas and liquid densities, respectively, a is
surface tension, VC is acoustic gas velocity and Tg is
atomizing-gas temperature, normalized with respect to
airstream temperature, To = 293 K. This expression
agrees well with atomization theory which predicts
Dv 5 — Vc.33' for liquid-jet breakup in high-velocity
gasflow.

Nomenclature

Ao	fuel nozzle orifice area, cm 

a	 acceleration, cm/sect

Cd	drag coefficient

Do	liquid-jet diameter, cm

Dv 5 volume median drop diameter, cm

k	 correlation coefficient for Eq. (1)

k'	 correlation coefficient for Eq. (6)

k"	 correlation coefficient for Eq. (7)

Nu	 heat-transfer Nusselt number, based on Dv.5e

n	 exponent for Eq. (1)

Re	 Reynolds number based on Dv.5e

t	 vaporization time, sec

VC	 acoustic velocity, cm/sec

W	 weight flow of fluid, g/sec

We Weber number based on Dv.5e

x	 axial downstream spray sampling distance

Q	 surface tension relative to air, dynes/cm

µ	 absolute viscosity, g/cm sec

P	 fluid density, g/cm3

Subscripts

c	 calculated

d	 droplet

e	 experimental

f	 free-stream

g	 gaseous nitrogen, GN2

1	 liquid nitrogen, LN2

0	 orifice

Introduction

An experimental investigation of cryogenic liquid-
jet breakup in high-velocity gasflow was conducted to
determine the effect of atomizing-gas temperature, Tg,
on characteristic dropsize, Dv 5, of liquid-nitrogen
sprays. Very little data are available in the spray
literature that show gas-temperature effects on atomi-
zation. However, the effect of gas velocity, V g, on
liquid-jet breakup in gas streams has been studied by
numerous investigators. 1-7 Their results are summarized
in Table I. Water jet breakup results described in Ref. 1
show that good agreement can be obtained with atomi-
zation theory, when dropsize measurements are made
close to the atomizer orifice. However, a marked effect
of droplet vaporization on dropsize measurements of
water sprays did occur, as reported in Ref. 1, when the
sampling distance downstream of the atomizer was in-
creased from 2.2 to 6.7 cm. In the case of liquid-nitrogen
sprays, good agreement with atomization theory may
not occur, since highly volatile sprays can quickly
become partially vaporized.
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In a previous investigation of disintegrating LN2
jets, 2 dropsize measurements were made in the presence
of relatively high thermal gradients. The atomizing gas,
GN2 , was at room temperature, 293 K, whereas LN2
droplet temperatures were near the boiling point of LN2,
77 K. Thus, heat transfer across the gas film had a
driving potential, OT, of 216 K. This is considerably
higher than values of AT in the order of 10 to 15 K,
which were encountered in previous water spray studies
reported in Ref. 1.

Although the original characteristic dropsize
initially formed at the atomizer orifice was not measured
directly, in the present study, it was possible to deter-
mine the initial value of Dv.5c by calculating the
amount it had changed due to evaporation. Droplet ac-
celeration and vaporization rates were calculated from
heat transfer and drag coefficient data given in Ref. 8.
These data had previously been obtained for drops accel-
erating and vaporizing in high-velocity gasflows. Such
data are difficult to obtain for drops that are micro-
scopic in size and attain high velocity in a short distance
of travel. By using heat transfer and drag coefficients
given in Ref. 8, values of AD v 5 produced by droplet
vaporization could be calculated and used to determine
original values of Dv 5c, that existed before vaporization
and occurred.

To determine the effect of atomizing-gas tempera-
ture and gas mass-flux on spray dropsize produced by
liquid-jet breakup in high-velocity gasflow, the charac-
teristic dropsize Dv.5e was measured with a scattered-
light scanner developed at NASA Lewis Research Center
by Buchele. 9 Sprays were sampled with the laser beam
center line positioned at a distance of 1.2 cm down-
stream of the fuel nozzle orifice to minimize the loss of
small droplets due to vaporization. Volume mean diam-
eter, Dv.5e varied from 3 to 30 ,um and measurements of

Dv 5e were made at atomizing-gas temperatures of 111,
293, and 422 K, respectively.

Apparatus and Procedure

A two-fluid nozzle was used with assist nitrogen
gasflow, GN2 , to breakup liquid nitrogen, LN 2-jets, as
shown in Fig. 1. It was mounted at the center line of the
24-cm diameter duct and operated over pressure ranges
of 0.2 to 1.0 MPa for both LN 2 and GN2 . LN2 sprays
were injected downstream into the airflow, just up-
stream of the duct exit, and sampled at a distance of
1.2 cm downstream from the atomizer orifice to the cen-
ter line of the 4.4x1.9 cm laser beam. The two-fluid
nozzle was fabricated according to the diagram illustra-
ted in Fig. 2. LN 2 at a temperature of 77 K was axially
injected into the airstream by gradually opening the
control valve until the desired flowrate of 51 g/sec was

obtained as indicated by a turbine flowmeter. The atom-
izing gas was then turned on and weight flowrate was
measured with a 0.51-cm diameter sharp-edge orifice.
After the air, GN2 and LN2 flowrates were set, the
volume median diameter, Dv.5e, was measured with the
scattered-light scanner.

The optical system of the scattered-light scanner
shown in Fig. 3 consisted of a laser beam expander with
spatial filter, rotating scanning-slit and a detector. The
instrument measures scattered light as a function of
scattering angle by repeatedly sweeping a variable-
length slit in the focal plane of the collecting lens. The
data obtained is scattered-light energy as a function of
the scattering angle relative to the laser beam axis. This
method of particle size measurement is similar to that
described in Ref. 10. Measurements of scattered-light
energy normalized by the maximum energy were plotted
against scattering angle and used to determine volume-
median diameter, Dv.5., as described in Ref. 11. Also, it
should be noted that the size-distribution dispersion can
also be determined from this plot. Also, this method of
determining characteristic dropsize and dispersion of
dropsize can be used independent of particle size distri-
bution function, according to Buchele." For a typical
measurement, the scan is repeated 60 times per second
to average out any temporal variations in the energy
curve.

Spray pattern effects were minimized by measuring

Dv 5e for the entire cloud of droplets. The instrument
was calibrated with five sets of monosized polystyrene
spheres having diameters of 8, 12, 25, 50, and 100 um.
Since the sprays were sampled very close to the atomizer
orifice, they contained a relatively high number-density
of very small droplets. As a result, the light-scattering
measurements required correction for multiple scattering
as described in Ref. 12. Also, dropsize measurements
were corrected to include Mie scattering theory when
very small drop diameters, i.e., 10 µm, were measured.
Reproducibility tests showed that experimental measure-
ments agreed within f5 percent.

It was necessary to correct experimental meas-
urements by taking background readings when the
atomizing-gas, GN 2 temperature was well above or
below airstream temperature. This was due to high gas-
density gradients being present when atomizing-gas tem-
peratures were relatively high, 422 K, or low, 111 K, as
compared with the surrounding airstream temperature
of 293 K. Only a small correction was needed at
Tg = 293 K, since gas density gradients were close to
zero. Temperature gradients for nitrogen vapor films
surrounding the droplets were assumed to have negligi-
ble effect on measurements, since this was found to be
the case when water sprays were studied in Ref. 15.
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Experimental Results

To obtain dropsize measurements, the entire LN2_
spraycross section was sampled and the laser beam
center line was located at a distance of 1.2 cm down-
stream of the fuel-nozzle orifice, as shown in Fig. 1.
Droplets traveled a distance of 2.0 cm in passing
through the scattered-light scanner laser beam. However,
some of the very small and highly volatile LN 2 droplets
were completely vaporized before they could travel
through the laser beam. As a result, experimental values
of D,.5,, were obtained for partially vaporized sprays.
Thus, it was necessary to calculate the change in
dropsize, ODD 5 , in order to estimate the initially
unvaporized spray dropsize, Dv.5c, that was formed at
the fuel-nozzle orifice. Values of Dv.50 were then
correlated with atomizing-gas flowrate, W9' Such
correlations are needed for modeling spray vaporization
and combustion processes.

Effect of GN 2 Flowrate on Dv 5e

Measurements of Dv.5e were made with the
scattered-light scanner and plotted against GN2 flow-
rate, Wg, as shown in Fig. 4. Since high-velocity
atomizing-gas flowrates were used, cryogenic liquid-jet
breakup occurred primarily in the regime of aerody-
namic stripping. No indication of secondary breakup of
droplets was observed since low atomizing-gas velocities
were not used. Thus, the low gas-velocity regime of cap-
illary wave breakup of liquid jets was not investigated.

From the plot shown in Fig. 4, reciprocal Dv.5e was
correlated with atomizing-gas flowrate, Wg, and the
following expression was obtained:

—1 _	 n	 1

	

Dv.5e — k e W9	( )

Values of the proportionality constant k and exponent
n are given in Table 11. At an atomizing-gas tempera-
ture of 293 K, the following expression was obtained:
D v 15e = 301 W1-11 , where D v 15e and Wg are expressed
as cm	 andand g/sec, respectively.

The exponent 1.11 for W is considerably less than
1.33 as predicted by theory for liquid-jet breakup in
high-velocity gasflow. This discrepancy can be attrib-
uted to a loss of small vaporizing LN 2 drops before
spray measurements could be made with the scattered-
light scanner. In the present study, results agree better
with atomization theory than those reported in Ref. 9.
This is due to the allowance made in the present study
for the effect of droplet vaporization on dropsize meas-
urements of highly volatile sprays. This effect was not
accounted for in Ref. 9 and although the dropsize data

did appear to agree with theory, the proportionality
constant k was too low to adequately characterize the
initial unvaporized spray. Thus, the study in Ref. 9 did
not take into account the effect of small droplets vapor-
izing completely before they could pass through the laser
beam.

Acceleration of LN 2 Droplets

The effect of droplet vaporization rate on experi-
mental values of Dv.5e was determined by calculating
vaporization time, t, as based on droplet velocity Vd , for
Dv.5e• Time, t, was calculated over a distance of 2.2 cm,
i.e., the distance from nozzle orifice to the downstream
edge of the laser beam, as shown in Fig. 3.

In order to determine volume-median drop veloc-
ity, Vd , the acceleration, a, of LN2 droplets was calcu-
lated from the following momentum balance as given in
Ref. 8:

	

mda — 2 P9Ad(V9 — Vd) 2Cd	 (2)

where and and Ad are mass and area of dropsize Dv.5e,
respectively, i.e., and = p1 "Dv.5e/6I Cd is the drag
coefficient based on characteristic length, Dv.5e• Rewrit-
ing this expression, in terms of change in drop-velocity
squared, AVd, over the distance of travel, Ax, the
following relationship is obtained:

AV 	 3pg(Vg — Vd)2

	

Cd	(3)
Ax	 2p1 Dv.5e

where C  = 27 Re0 '84 , as given in Ref. 8, and Re is
based on the characteristic dropsize, Dv.5e•

The deceleration of atomizing gaseous nitrogen jets
into a surrounding low velocity airflow was determined
as follows. At the nozzle orifice, gas velocity, V g, was
equal to the acoustic velocity, Vc , of gaseous nitrogen.
Values of Vg used to solve Eq. (3), were calculated at
downstream distances of x = 0.5, and 10 cm, respec-
tively and plotted in Fig. 5. Calculated values of V29

based on data given in Ref. 13 and plotted in Fig. 5 for
comparison. The percent deceleration of the atomizing
nitrogen gas is assumed to be approximately the same in
both cases, since the two-fluid nozzles used in Ref. 13
and the present study were very similar in design.

To determine the acceleration of LN2 droplets
characterized by Dv.5eJ values of V 2 were calculated by
numerically integrating Eq. (3) and plotting Va against



downstream distance, x, as shown in Fig. 6, for three
atomizing-gas temperatures. LN2 droplet vaporization
time, At, was calculated from this plot by means of the
expression At = Ax/Vd . Calculated values of At for a
given distance Ax are given in Table III along with cal-
culated Reynolds numbers averaged over the incremental
distance Ax and values of D,. 5c . Gas and liquid trans-
port properties used in calculating vaporization times
are given in Table IV.

Cryogenic Spray Vaporization Rates

Vaporization rates of LN 2 sprays characterized by
Dv 5e were calculated by using the following heat-
balance equation: dmd/dt = hA AT/Ht , where h is the
heat-transfer coefficient, A is droplet surface-area based
on Dv.se) AT = T  — Td, and Ht = Hv + C  AT. Here
Hv is the latent heat of vaporization of LN2 and C  is
the specific heat of GN2 . This expression may be rewrit-
ten as follows to obtain vaporization rate in terms of
changes in droplet surface-area with time:

AD2.S — 4k ATNug 	
(4)

At	 P1Ht

where kg and p 1 are gas thermal conductivity and liquid
density, respectively. In previous fuel droplet studies

reported in Ref. 8, a high-speed droplet tracking camera
was used to determine vaporization rates of fuels such
as n-octane, jet-A, and numerous other liquids includ-
ing water, benzene, acetone, and carbon tetrachloride.
It was found that: Nu = 2 + 0.303 Re0'6 , where Re

= P  Dv.5e AV/µg, and AV is the average velocity dif-
ference over an incremental distance Ax. Vaporization
rate calculations were based on the characteristic drop
diameter Dv.5e• GN2 viscosity and thermal conductivity
were evaluated at the average gas-film temperature, i.e.,
Tf = 1/2 (Tg + T 1 ). LN2 droplet surface temperatures
were assumed to be near the boiling point, 77 K, when
droplet sprays were being accelerated and partially
vaporized. The latent heat of vaporization of LN 2 was
evaluated at 77 K and the specific heat of nitrogen va-
por was evaluated at the average gas-film temperature,
T

f*

Experimental values of D ^ 15e, calculated values of

D v 15c 
and changes in characteristic drop diameter

squared, ADv 5, that occurred due to partial vaporiza-
tion of the cryogenic sprays are given in Table V. Cal-
culations were based on GN 2 and LN2 flowrates of
4.54 and 51 g/sec, respectively. Values of Dv.5c were
calculated from the expression: —ODD 5 = Dv.5c — Dv.5e
and they are plotted against W  as shown in Fig. 7.

From this plot, the following correlating expression is
obtained: D v 15c = kcWg, which is similar to Eq. (1).
Values of kc and n are given in Table V. For the case T 
= 293 K:

	

D_I= 285 Wg
3 3 	 (5)

Comparing this expression with Eq. (1), i.e., Dv 15e
= 301Wg' 11 , shows that the proportionality constants ke
and kc are nearly equal. Also, Eq. (5) shows that droplet
vaporization did have considerable effect on the expo-
nent n. The value of n given in Eq. (5) agrees well with
atomization theory which predicts n = 1.33. Thus, the
agreement of Eq. (5) with atomization theory indicates
that an expresson for the unvaporized spray near the
fuel-nozzle orifice can be calculated using heat-transfer
and drag coefficients given in Ref. 8.

Correlation of Dv.5c with Dimensionless Force Ratios

The calculated volume-median diameter Dv.5c was
normalized with respect to LN 2 jet diameter, D o , and as
shown in Fig. 8, is plotted against the product of We,
Re, and pg/p l , i.e., the Weber number, Reynolds
number, and gas-to-liquid density ratio, respectively.
From this plot, the following dimensionless expression
was derived:

0.44

	

D. 
= k' WeRe Pg	(6)

Dv.5c	 P1

where WeRe is the ratio of aerodynamic to liquid-jet
surface forces, i.e., liquid viscosity and surface tension.
From the three plots shown in Fig. 8, it is evident that
Dv.5c is a function of atomizing-gas temperature, i.e.,
Da/Dv.5c = f(Tg). Thus, k' is assumed to be a function
of atomizing-gas temperature normalized with respect to
Tf, i.e., k' ^- T/Tf, where Tf is the free-airstream tem-
perature, 293 9, of the low velocity airflow in the test
section as shown in Fig. 1.

From a log-log plot of k' against T g/Tp it was
found that k' — (T g/Tf) 1.25 and as a result, the follow-
ing correlating expression can be written:

D	 P 0.44(TJ1.25

° = k" WeRe s	 g	 (7)
Dv.5c	

c	
P1	 Tf

This expression is plotted in Fig. 9 which shows that k"'
= 9.0. Thus, Eq. (7) may be rewritten as follows:



2 10.44

1.25
—1	 9	 Do	 133 ^T]

8	 (8)
Dv.sc —	 (pgVc)

Do p 1 p l v	 Tf

where pgV, = Wg/Ao . Here it is evident that the ther-
modynamic effect of normalized atomizing-gas tempera-
ture, Tg/Tf on the reciprocal volume-median diameter
is nearly as great as that of the atomizing-gas mass flux
pgV^, which is also a function of gas temperature, i.e.,
pgV^ _T s 0 ' S . As a result, Eq. (8) shows that D-1 5C
ti T ' A similar effect of atomizing-gas temperature
on ) v 5 was obtained for water sprays, as reported in
Ref. 15.

From experimental dropsize measurements of
partially vaporized liquid-nitrogen sprays, it was found
that increasing the atomizing-gas temperature gave a
marked increase in the surface area per unit volume of
liquid-nitrogen sprays. A result that would be very
beneficial in producing very rapid and efficient fuel-
spray combustion in gas turbine and rocket combustors.

Concluding Remarks

Computations in the present study were based on
numerical integration of momentum and heat-transfer
expressions that had been developed in previous droplet
studies, at NASA Lewis. As a result, the effect of droplet
vaporization on dropsize measurements was determined.
Without this source of knowledge, on calculating rates
of heat and momentum transfer to vaporizing cryogenic
drops, it would be almost impossible to determine the
characteristic dropsize of an initially unvaporized
cryogenic spray produced at the orifice of a two-fluid
fuel nozzle. Thus with the computational method used
in this study, it was possible to determine the effect of
atomizing-gas temperature on cryogenic spray dropsize,
once the effect of droplet vaporization on dropsize
measurements had been determined. Also, it was found
that the effect of atomizing-gas mass-flux, p 9Vc , on
volume-median drop diameter agreed well with atomiza-
tion theory for liquid-jet breakup in high-velocity
gasflows. The final correlating expression derived in this
study (Eq. (8)), can be readily applied to analytical
modeling of fuel spray vaporization and combustion in
gas-turbine and rocket combustors, within the range of
variables investigated in this study.
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TABLE I.—ATOMIZING-GAS VELOCITY EXPO-

NENT, n, FOR HIGH-VELOCITY GASFLOW

BREAKUP OF LIQUID JETS

Source Exponent,
n

Adelberg, Theory 14 1.33
Present study, x = 2.2 cm 1.33
Kim and Marshalls 1.14
Lorenzetto and Lefebvre" 1.00
Nukiyama and Tanasawa, b x = 5 to 25 cm 1.00
Weiss and Worsham 6 1.33
Wolf and Anderson ? 1.33

TABLE II.—COEFFICIENT k

AND EXPONENT nFOR

EQ. (1)°

Atomizing-gas k n
temperature,

Ts,

K

111 82 1.22

293 301 1.11

422 367 1.08

aD v.de — keW'

TABLE III.—VAPORIZATION TIME, t,

FOR D_ ae AT W g = 4.54 g/sec AND
AY—^^

Atomizing-gas -1 Atx10",

temperature,

D
6 1 sec

Ts, —1cm
K

111 540 4.40

293 1600 1.44

422 1900 .99
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TABLE IV.—GN 2 AND LN2 TRANSPORT PROPERTIES AT

W – d Sd s1oar ANTI T = ?.Q.I K

Nitrogen gas

V c,cm/sec	 ........................................... 3.43x104
P6 > g/cc	 ............................................. 3.84x10-4

aA., 9/cm sec	 ......................................... 1.25x10-4
ak6, cal/sec sq cm (°C/cm)	 ............................... 4.20x10 -5

LN, droplets

Vd,cm/sec	 ............................................... 204
P1,9/cc 	 .................................................. 0.80
H" ,	 cal/g	 ................................................. 47.8

C ps,, cal/g ° C	 .............................................. 0.25

'Evaluated at Tp = 1/2(T 6 – TO.

TABLE V.—REDUCTION IN DROPSIZE, –A D2 6, AND

UNVAPORIZED DROPSIZE, D_. ,. AT W_ = 4.54 a/sec

Atomizing-gas –ADS 6 x10 9 , –1
Dv.5"

—1

Dv.ac,temperature,
Cm2Te, cm -1 cm -1

K

111 29.7 540 565
293 16.3 1600 2100
422 13.2 2000 2950

Figure 1. Apparatus and auxiliary equipment.
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Figure 2--Diagram of pneumatic two-fluid atomizer.
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Figure 3.—Atmospheric pressure test section and optical path of scattered-light scanner.
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Figure 4.—Effect of atomizing-gas flowrate on reciprocal volume-

median diameter, .5Dv-1 e
, for partially vaporized LN2 sprays.
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Figure 6.—Acceleration of volume-median dropsize, Dv,5e.
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